External noise control in inherently stochastic biological systems.

نویسندگان

  • Likun Zheng
  • Meng Chen
  • Qing Nie
چکیده

Biological systems are often subject to external noise from signal stimuli and environmental perturbations, as well as noises in the intracellular signal transduction pathway. Can different stochastic fluctuations interact to give rise to new emerging behaviors? How can a system reduce noise effects while still being capable of detecting changes in the input signal? Here, we study analytically and computationally the role of nonlinear feedback systems in controlling external noise with the presence of large internal noise. In addition to noise attenuation, we analyze derivatives of Fano factor to study systems' capability of differentiating signal inputs. We find effects of internal noise and external noise may be separated in one slow positive feedback loop system; in particular, the slow loop can decrease external noise and increase robustness of signaling with respect to fluctuations in rate constants, while maintaining the signal output specific to the input. For two feedback loops, we demonstrate that the influence of external noise mainly depends on how the fast loop responds to fluctuations in the input and the slow loop plays a limited role in determining the signal precision. Furthermore, in a dual loop system of one positive feedback and one negative feedback, a slower positive feedback always leads to better noise attenuation; in contrast, a slower negative feedback may not be more beneficial. Our results reveal interesting stochastic effects for systems containing both extrinsic and intrinsic noises, suggesting novel noise filtering strategies in inherently stochastic systems.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robustness of mathematical models for biological systems

The robustness of mathematical models for biological systems is studied by sensitivity analysis and stochastic simulations. Using a neural network model with three genes as the test problem, we study robustness properties of synthesis and degradation processes. For single parameter robustness, sensitivity analysis techniques are applied for studying parameter variations and stochastic simulatio...

متن کامل

Use of Hamiltonian mechanics in systems driven by colored noise.

The evaluation of the path-integral representation for stochastic processes in the weak-noise limit shows that these systems are governed by a set of equations which are those of a classical dynamics. We show that, even when the noise is colored, these may be put into a Hamiltonian form which leads to better insights and improved numerical treatments. We concentrate on solving Hamilton's equati...

متن کامل

Designinga Neuro-Sliding Mode Controller for Networked Control Systems with Packet Dropout

This paper addresses control design in networked control system by considering stochastic packet dropouts in the forward path of the control loop. The packet dropouts are modelled by mutually independent stochastic variables satisfying Bernoulli binary distribution. A sliding mode controller is utilized to overcome the adverse influences of stochastic packet dropouts in networked control system...

متن کامل

Stochastic resonance as a collective property of ion channel assemblies

By use of a stochastic generalization of the Hodgkin-Huxley model we investigate both the phenomena of stochastic resonance (SR) and coherence resonance (CR) in variable size patches of an excitable cell membrane. Our focus is on the challenge how internal noise stemming from individual ion channels does affect collective properties of the whole ensemble. We investigate both an unperturbed situ...

متن کامل

Introduction to Stochastic Models in Biology

This chapter is concerned with continuous time processes, which are often modeled as a system of ordinary differential equations (ODEs). These models assume that the observed dynamics are driven exclusively by internal, deterministic mechanisms. However, real biological systems will always be exposed to influences that are not completely understood or not feasible to model explicitly. Ignoring ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of mathematical physics

دوره 53 11  شماره 

صفحات  -

تاریخ انتشار 2012